

LINEAR ALGEBRA with Applications

Open Edition

ADAPTABLE | ACCESSIBLE | AFFORDABLE

Adapted for

Emory University

Math 221

Linear Algebra

Sections 1 & 2 Lectured and adapted by

Le Chen

April 15, 2021

le.chen@emory.edu
Course page
http://math.emory.edu/~lchen41/teaching/2021_Spring_Math221

by W. Keith Nicholson Creative Commons License (CC BY-NC-SA)

Contents

1	Systems of Linear Equations				
	1.1	Solutions and Elementary Operations	6		
	1.2	Gaussian Elimination	16		
	1.3	Homogeneous Equations	28		
	Sup	plementary Exercises for Chapter 1	37		
2	Ma	trix Algebra	39		
	2.1	Matrix Addition, Scalar Multiplication, and Transposition	40		
	2.2	Matrix-Vector Multiplication	53		
	2.3	Matrix Multiplication	72		
	2.4	Matrix Inverses	91		
	2.5	Elementary Matrices	109		
	2.6	Linear Transformations	119		
	2.7	LU-Factorization	135		
3	Determinants and Diagonalization				
	3.1	The Cofactor Expansion	148		
	3.2	Determinants and Matrix Inverses	163		
	3.3	Diagonalization and Eigenvalues	178		
	Sup	plementary Exercises for Chapter 3	201		
4	Vector Geometry 2				
	4.1	Vectors and Lines	204		
	4.2	Projections and Planes	223		
	4.3	More on the Cross Product	244		
	4.4	Linear Operators on \mathbb{R}^3	251		
	Sup	plementary Exercises for Chapter 4	260		
5	Vector Space \mathbb{R}^n 2				
	5.1	Subspaces and Spanning	264		
	5.2	Independence and Dimension	273		
	5.3	Orthogonality	287		
	5.4	Rank of a Matrix	297		

$4 \equiv \text{CONTENTS}$

	5.5	Similarity and Diagonalization	,
	Supp	plementary Exercises for Chapter 5	1
6	Vec	tor Spaces 321	
	6.1	Examples and Basic Properties	1
	6.2	Subspaces and Spanning Sets	,
	6.3	Linear Independence and Dimension	1
	6.4	Finite Dimensional Spaces	:
	Supp	plementary Exercises for Chapter 6	:
7	Line	ear Transformations 365	,
	7.1	Examples and Elementary Properties	į
	7.2	Kernel and Image of a Linear Transformation	:
	7.3	Isomorphisms and Composition	1
8	Ort	hogonality 399)
	8.1	Orthogonal Complements and Projections	1
	8.2	Orthogonal Diagonalization	1
	8.3	Positive Definite Matrices 421	
	8.4	QR-Factorization	,
	8.5	Computing Eigenvalues	
	8.6	The Singular Value Decomposition	,
		8.6.1 Singular Value Decompositions	,
		8.6.2 Fundamental Subspaces	1
		8.6.3 The Polar Decomposition of a Real Square Matrix	,
		8.6.4 The Pseudoinverse of a Matrix	,

6.2 Subspaces and Spanning Sets

Chapter 5 is essentially about the subspaces of \mathbb{R}^n . We now extend this notion.

Definition 6.2 Subspaces of a Vector Space

If V is a vector space, a nonempty subset $U \subseteq V$ is called a **subspace** of V if U is itself a vector space using the addition and scalar multiplication of V.

Subspaces of \mathbb{R}^n (as defined in Section 5.1) are subspaces in the present sense by Example 6.1.3. Moreover, the defining properties for a subspace of \mathbb{R}^n actually *characterize* subspaces in general.

Theorem 6.2.1: Subspace Test

A subset U of a vector space is a subspace of V if and only if it satisfies the following three conditions:

1. **0** lies in U where **0** is the zero vector of V.

2. If \mathbf{u}_1 and \mathbf{u}_2 are in U, then $\mathbf{u}_1 + \mathbf{u}_2$ is also in U.

3. If \mathbf{u} is in U, then $a\mathbf{u}$ is also in U for each scalar a.

Proof. If U is a subspace of V, then (2) and (3) hold by axioms A1 and S1 respectively, applied to the vector space U. Since U is nonempty (it is a vector space), choose **u** in U. Then (1) holds because $\mathbf{0} = 0\mathbf{u}$ is in U by (3) and Theorem 6.1.3.

Conversely, if (1), (2), and (3) hold, then axioms A1 and S1 hold because of (2) and (3), and axioms A2, A3, S2, S3, S4, and S5 hold in U because they hold in V. Axiom A4 holds because the zero vector **0** of V is actually in U by (1), and so serves as the zero of U. Finally, given **u** in U, then its negative $-\mathbf{u}$ in V is again in U by (3) because $-\mathbf{u} = (-1)\mathbf{u}$ (again using Theorem 6.1.3). Hence $-\mathbf{u}$ serves as the negative of **u** in U.

Note that the proof of Theorem 6.2.1 shows that if U is a subspace of V, then U and V share the same zero vector, and that the negative of a vector in the space U is the same as its negative in V.

Example 6.2.1

If V is any vector space, show that $\{0\}$ and V are subspaces of V.

Solution. U = V clearly satisfies the conditions of the subspace test. As to $U = \{0\}$, it satisfies the conditions because 0 + 0 = 0 and a0 = 0 for all a in \mathbb{R} .

The vector space $\{0\}$ is called the **zero subspace** of *V*.

Example 6.2.2

Let **v** be a vector in a vector space V. Show that the set

$$\mathbb{R}\mathbf{v} = \{a\mathbf{v} \mid a \text{ in } \mathbb{R}\}\$$

of all scalar multiples of \mathbf{v} is a subspace of V.

<u>Solution</u>. Because $\mathbf{0} = 0\mathbf{v}$, it is clear that $\mathbf{0}$ lies in $\mathbb{R}\mathbf{v}$. Given two vectors $a\mathbf{v}$ and $a_1\mathbf{v}$ in $\mathbb{R}\mathbf{v}$, their sum $a\mathbf{v} + a_1\mathbf{v} = (a + a_1)\mathbf{v}$ is also a scalar multiple of \mathbf{v} and so lies in $\mathbb{R}\mathbf{v}$. Hence $\mathbb{R}\mathbf{v}$ is closed under addition. Finally, given $a\mathbf{v}$, $r(a\mathbf{v}) = (ra)\mathbf{v}$ lies in $\mathbb{R}\mathbf{v}$ for all $r \in \mathbb{R}$, so $\mathbb{R}\mathbf{v}$ is closed under scalar multiplication. Hence the subspace test applies.

In particular, given $\mathbf{d} \neq \mathbf{0}$ in \mathbb{R}^3 , $\mathbb{R}\mathbf{d}$ is the line through the origin with direction vector \mathbf{d} .

The space $\mathbb{R}\mathbf{v}$ in Example 6.2.2 is described by giving the *form* of each vector in $\mathbb{R}\mathbf{v}$. The next example describes a subset U of the space \mathbf{M}_{nn} by giving a *condition* that each matrix of U must satisfy.

Example 6.2.3

Let A be a fixed matrix in \mathbf{M}_{nn} . Show that $U = \{X \text{ in } \mathbf{M}_{nn} \mid AX = XA\}$ is a subspace of \mathbf{M}_{nn} .

Solution. If 0 is the $n \times n$ zero matrix, then A0 = 0A, so 0 satisfies the condition for membership in U. Next suppose that X and X_1 lie in U so that AX = XA and $AX_1 = X_1A$. Then

$$A(X+X_1) = AX + AX_1 = XA + X_1A + (X+X_1)A$$
$$A(aX) = a(AX) = a(XA) = (aX)A$$

for all a in \mathbb{R} , so both $X + X_1$ and aX lie in U. Hence U is a subspace of \mathbf{M}_{nn} .

Suppose p(x) is a polynomial and a is a number. Then the number p(a) obtained by replacing x by a in the expression for p(x) is called the **evaluation** of p(x) at a. For example, if $p(x) = 5 - 6x + 2x^2$, then the evaluation of p(x) at a = 2 is p(2) = 5 - 12 + 8 = 1. If p(a) = 0, the number a is called a **root** of p(x).

Example 6.2.4

Consider the set U of all polynomials in **P** that have 3 as a root:

$$U = \{ p(x) \in \mathbf{P} \mid p(3) = 0 \}$$

Show that U is a subspace of \mathbf{P} .

<u>Solution</u>. Clearly, the zero polynomial lies in U. Now let p(x) and q(x) lie in U so p(3) = 0 and q(3) = 0. We have (p+q)(x) = p(x) + q(x) for all x, so (p+q)(3) = p(3) + q(3) = 0 + 0 = 0, and U is closed under addition. The verification that U is closed under scalar multiplication is similar.

Recall that the space \mathbf{P}_n consists of all polynomials of the form

$$a_0 + a_1x + a_2x^2 + \dots + a_nx^n$$

where $a_0, a_1, a_2, \ldots, a_n$ are real numbers, and so is closed under the addition and scalar multiplication in **P**. Moreover, the zero polynomial is included in **P**_n. Thus the subspace test gives Example 6.2.5.

Example 6.2.5

 \mathbf{P}_n is a subspace of \mathbf{P} for each $n \geq 0$.

The next example involves the notion of the derivative f' of a function f. (If the reader is not familiar with calculus, this example may be omitted.) A function f defined on the interval [a, b] is called **differentiable** if the derivative f'(r) exists at every r in [a, b].

Example 6.2.6

Show that the subset D[a, b] of all **differentiable functions** on [a, b] is a subspace of the vector space F[a, b] of all functions on [a, b].

Solution. The derivative of any constant function is the constant function 0; in particular, 0 itself is differentiable and so lies in $\mathbf{D}[a, b]$. If f and g both lie in $\mathbf{D}[a, b]$ (so that f' and g' exist), then it is a theorem of calculus that f + g and rf are both differentiable for any $r \in \mathbb{R}$. In fact, (f+g)' = f' + g' and (rf)' = rf', so both lie in $\mathbf{D}[a, b]$. This shows that $\mathbf{D}[a, b]$ is a subspace of $\mathbf{F}[a, b]$.

Linear Combinations and Spanning Sets

Definition 6.3 Linear Combinations and Spanning

Let $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ be a set of vectors in a vector space V. As in \mathbb{R}^n , a vector \mathbf{v} is called a **linear combination** of the vectors $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$ if it can be expressed in the form

$$\mathbf{v} = a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \dots + a_n \mathbf{v}_n$$

where a_1, a_2, \ldots, a_n are scalars, called the **coefficients** of $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$. The set of all linear combinations of these vectors is called their **span**, and is denoted by

span {
$$\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$$
} = { $a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \dots + a_n \mathbf{v}_n \mid a_i \text{ in } \mathbb{R}$ }

If it happens that $V = \text{span} \{ \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \}$, these vectors are called a **spanning set** for V. For example, the span of two vectors \mathbf{v} and \mathbf{w} is the set

span {
$$\mathbf{v}$$
, \mathbf{w} } = { $s\mathbf{v} + t\mathbf{w} \mid s \text{ and } t \text{ in } \mathbb{R}$ }

of all sums of scalar multiples of these vectors.

Example 6.2.7

Consider the vectors $p_1 = 1 + x + 4x^2$ and $p_2 = 1 + 5x + x^2$ in \mathbf{P}_2 . Determine whether p_1 and p_2 lie in span $\{1 + 2x - x^2, 3 + 5x + 2x^2\}$.

Solution. For p_1 , we want to determine if s and t exist such that

$$p_1 = s(1 + 2x - x^2) + t(3 + 5x + 2x^2)$$

Equating coefficients of powers of x (where $x^0 = 1$) gives

$$1 = s + 3t$$
, $1 = 2s + 5t$, and $4 = -s + 2t$

These equations have the solution s = -2 and t = 1, so p_1 is indeed in span $\{1+2x-x^2, 3+5x+2x^2\}$.

Turning to $p_2 = 1 + 5x + x^2$, we are looking for s and t such that

$$p_2 = s(1 + 2x - x^2) + t(3 + 5x + 2x^2)$$

Again equating coefficients of powers of x gives equations 1 = s + 3t, 5 = 2s + 5t, and 1 = -s + 2t. But in this case there is no solution, so p_2 is not in span $\{1 + 2x - x^2, 3 + 5x + 2x^2\}$.

We saw in Example 5.1.6 that $\mathbb{R}^m = \text{span} \{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_m\}$ where the vectors $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_m$ are the columns of the $m \times m$ identity matrix. Of course $\mathbb{R}^m = \mathbf{M}_{m1}$ is the set of all $m \times 1$ matrices, and there is an analogous spanning set for each space \mathbf{M}_{mn} . For example, each 2×2 matrix has the form

 \mathbf{SO}

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = a \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + d \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$
$$\mathbf{M}_{22} = \operatorname{span} \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

Similarly, we obtain

Example 6.2.8

 \mathbf{M}_{mn} is the span of the set of all $m \times n$ matrices with exactly one entry equal to 1, and all other entries zero.

The fact that every polynomial in \mathbf{P}_n has the form $a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$ where each a_i is in \mathbb{R} shows that

Example 6.2.9 $\mathbf{P}_n = \text{span} \{1, x, x^2, ..., x^n\}.$

In Example 6.2.2 we saw that $\operatorname{span} \{ \mathbf{v} \} = \{ a\mathbf{v} \mid a \text{ in } \mathbb{R} \} = \mathbb{R}\mathbf{v}$ is a subspace for any vector \mathbf{v} in a vector space V. More generally, the span of *any* set of vectors is a subspace. In fact, the proof of Theorem 5.1.1 goes through to prove:

Theorem 6.2.2

Let $U = \text{span} \{ \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \}$ in a vector space V. Then:

1. U is a subspace of V containing each of $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$.

2. U is the "smallest" subspace containing these vectors in the sense that any subspace that contains each of $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ must contain U.

Here is how condition 2 in Theorem 6.2.2 is used. Given vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$ in a vector space V and a subspace $U \subseteq V$, then:

span {
$$\mathbf{v}_1, \ldots, \mathbf{v}_n$$
} $\subseteq U \Leftrightarrow \text{ each } \mathbf{v}_i \in U$

The following examples illustrate this.

Example 6.2.10

Show that $\mathbf{P}_3 = \text{span}\{x^2 + x^3, x, 2x^2 + 1, 3\}.$

Solution. Write $U = \text{span} \{x^2 + x^3, x, 2x^2 + 1, 3\}$. Then $U \subseteq \mathbf{P}_3$, and we use the fact that $\mathbf{P}_3 = \text{span} \{1, x, x^2, x^3\}$ to show that $\mathbf{P}_3 \subseteq U$. In fact, x and $1 = \frac{1}{3} \cdot 3$ clearly lie in U. But then successively,

 $x^2 = \frac{1}{2}[(2x^2+1)-1]$ and $x^3 = (x^2+x^3)-x^2$

also lie in U. Hence $\mathbf{P}_3 \subseteq U$ by Theorem 6.2.2.

Example 6.2.11

Let **u** and **v** be two vectors in a vector space V. Show that

 $\operatorname{span} \{\mathbf{u}, \mathbf{v}\} = \operatorname{span} \{\mathbf{u} + 2\mathbf{v}, \mathbf{u} - \mathbf{v}\}$

Solution. We have span $\{\mathbf{u} + 2\mathbf{v}, \mathbf{u} - \mathbf{v}\} \subseteq$ span $\{\mathbf{u}, \mathbf{v}\}$ by Theorem 6.2.2 because both $\mathbf{u} + 2\mathbf{v}$ and $\mathbf{u} - \mathbf{v}$ lie in span $\{\mathbf{u}, \mathbf{v}\}$. On the other hand,

$$\mathbf{u} = \frac{1}{3}(\mathbf{u} + 2\mathbf{v}) + \frac{2}{3}(\mathbf{u} - \mathbf{v})$$
 and $\mathbf{v} = \frac{1}{3}(\mathbf{u} + 2\mathbf{v}) - \frac{1}{3}(\mathbf{u} - \mathbf{v})$

so span $\{\mathbf{u}, \mathbf{v}\} \subseteq$ span $\{\mathbf{u} + 2\mathbf{v}, \mathbf{u} - \mathbf{v}\}$, again by Theorem 6.2.2.

Exercises for 6.2

Exercise 6.2.1 Which of the following are subspaces of \mathbf{P}_3 ? Support your answer.

a.
$$U = \{ f(x) \mid f(x) \in \mathbf{P}_3, f(2) = 1 \}$$

b.
$$U = \{xg(x) \mid g(x) \in \mathbf{P}_2\}$$

c. $U = \{xg(x) \mid g(x) \in \mathbf{P}_3\}$
d. $U = \{xg(x) + (1-x)h(x) \mid g(x) \text{ and } h(x) \in \mathbf{P}_2\}$

- e. U = The set of all polynomials in \mathbf{P}_3 with constant term 0
- f. $U = \{f(x) \mid f(x) \in \mathbf{P}_3, \text{ deg } f(x) = 3\}$
- b. Yes
- d. Yes
- f. No; not closed under addition or scalar multiplication, and 0 is not in the set.

Exercise 6.2.2 Which of the following are subspaces of M_{22} ? Support your answer.

a.
$$U = \left\{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \middle| a, b, \text{ and } c \text{ in } \mathbb{R} \right\}$$

b.
$$U = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \middle| a + b = c + d; a, b, c, d \text{ in } \mathbb{R} \right\}$$

c.
$$U = \left\{ A \mid A \in \mathbf{M}_{22}, A = A^T \right\}$$

- d. $U = \{A \mid A \in \mathbf{M}_{22}, AB = 0\}, B$ a fixed 2×2 matrix
- e. $U = \{A \mid A \in \mathbf{M}_{22}, A^2 = A\}$
- f. $U = \{A \mid A \in \mathbf{M}_{22}, A \text{ is not invertible}\}$
- g. $U = \{A \mid A \in \mathbf{M}_{22}, BAC = CAB\}, B \text{ and } C \text{ fixed} 2 \times 2 \text{ matrices}$
- b. Yes.
- d. Yes.
- f. No; not closed under addition.

Exercise 6.2.3 Which of the following are subspaces of F[0, 1]? Support your answer.

a. $U = \{f \mid f(0) = 0\}$ b. $U = \{f \mid f(0) = 1\}$ c. $U = \{f \mid f(0) = f(1)\}$ d. $U = \{f \mid f(x) \ge 0 \text{ for all } x \text{ in } [0, 1]\}$

- e. $U = \{ f \mid f(x) = f(y) \text{ for all } x \text{ and } y \text{ in } [0, 1] \}$
- f. $U = \{f \mid f(x+y) = f(x) + f(y) \text{ for all } x \text{ and } y \text{ in } [0, 1]\}$
- g. $U = \{f \mid f \text{ is integrable and } \int_0^1 f(x)dx = 0\}$
- b. No; not closed under addition.
- d. No; not closed under scalar multiplication.
- f. Yes.

Exercise 6.2.4 Let *A* be an $m \times n$ matrix. For which columns **b** in \mathbb{R}^m is $U = \{\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n, A\mathbf{x} = \mathbf{b}\}$ a subspace of \mathbb{R}^n ? Support your answer.

Exercise 6.2.5 Let \mathbf{x} be a vector in \mathbb{R}^n (written as a column), and define $U = \{A\mathbf{x} \mid A \in \mathbf{M}_{mn}\}$.

- a. Show that U is a subspace of \mathbb{R}^m .
- b. Show that $U = \mathbb{R}^m$ if $\mathbf{x} \neq \mathbf{0}$.
- b. If entry k of **x** is $x_k \neq 0$, and if **y** is in \mathbb{R}^n , then $\mathbf{y} = A\mathbf{x}$ where the column of A is $x_k^{-1}\mathbf{y}$, and the other columns are zero.

Exercise 6.2.6 Write each of the following as a linear combination of x + 1, $x^2 + x$, and $x^2 + 2$.

a)
$$x^2 + 3x + 2$$

b) $2x^2 - 3x + 1$
c) $x^2 + 1$
d) x

b. $-3(x+1) + 0(x^2 + x) + 2(x^2 + 2)$ d. $\frac{2}{3}(x+1) + \frac{1}{3}(x^2 + x) - \frac{1}{3}(x^2 + 2)$

Exercise 6.2.7 Determine whether \mathbf{v} lies in span $\{\mathbf{u}, \mathbf{w}\}$ in each case.

a.
$$\mathbf{v} = 3x^2 - 2x - 1; \ \mathbf{u} = x^2 + 1, \ \mathbf{w} = x + 2$$

b. $\mathbf{v} = x; \ \mathbf{u} = x^2 + 1, \ \mathbf{w} = x + 2$

c.
$$\mathbf{v} = \begin{bmatrix} 1 & 3 \\ -1 & 1 \end{bmatrix}; \mathbf{u} = \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix}, \mathbf{w} = \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix}$$

d. $\mathbf{v} = \begin{bmatrix} 1 & -4 \\ 5 & 3 \end{bmatrix}; \mathbf{u} = \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix}, \mathbf{w} = \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix}$

b. No.

d. Yes; $\mathbf{v} = 3\mathbf{u} - \mathbf{w}$.

Exercise 6.2.8 Which of the following functions lie in span { $\cos^2 x$, $\sin^2 x$ }? (Work in **F**[0, π].)

- a) $\cos 2x$ b) 1 c) x^2 d) $1+x^2$
- b. Yes; $1 = \cos^2 x + \sin^2 x$
- d. No. If $1 + x^2 = a\cos^2 x + b\sin^2 x$, then taking x = 0 and $x = \pi$ gives a = 1 and $a = 1 + \pi^2$.

Exercise 6.2.9

- a. Show that \mathbb{R}^3 is spanned by $\{(1, 0, 1), (1, 1, 0), (0, 1, 1)\}.$
- b. Show that \mathbf{P}_2 is spanned by $\{1+2x^2, 3x, 1+x\}$.

c. Show that \mathbf{M}_{22} is spanned by $\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \right\}.$

b. Because $\mathbf{P}_2 = \text{span}\{1, x, x^2\}$, it suffices to show that $\{1, x, x^2\} \subseteq \text{span}\{1+2x^2, 3x, 1+x\}$. But $x = \frac{1}{3}(3x); 1 = (1+x) - x$ and $x^2 = \frac{1}{2}[(1+2x^2)-1]$.

Exercise 6.2.10 If X and Y are two sets of vectors in a vector space V, and if $X \subseteq Y$, show that span $X \subseteq$ span Y.

Exercise 6.2.11 Let \mathbf{u} , \mathbf{v} , and \mathbf{w} denote vectors in a vector space V. Show that:

- a. span { \mathbf{u} , \mathbf{v} , \mathbf{w} } = span { $\mathbf{u} + \mathbf{v}$, $\mathbf{u} + \mathbf{w}$, $\mathbf{v} + \mathbf{w}$ } b. span { \mathbf{u} , \mathbf{v} , \mathbf{w} } = span { $\mathbf{u} - \mathbf{v}$, $\mathbf{u} + \mathbf{w}$, \mathbf{w} }
- b. $\mathbf{u} = (\mathbf{u} + \mathbf{w}) \mathbf{w}, \ \mathbf{v} = -(\mathbf{u} \mathbf{v}) + (\mathbf{u} + \mathbf{w}) \mathbf{w},$ and $\mathbf{w} = \mathbf{w}$

Exercise 6.2.12 Show that

span {
$$v_1$$
, v_2 , ..., v_n , 0} = span { v_1 , v_2 , ..., v_n }

holds for any set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n\}$.

Exercise 6.2.13 If X and Y are nonempty subsets of a vector space V such that span X = span Y = V, must there be a vector common to both X and Y? Justify your answer.

Exercise 6.2.14 Is it possible that $\{(1, 2, 0), (1, 1, 1)\}$ can span the subspace $U = \{(a, b, 0) \mid a \text{ and } b \text{ in } \mathbb{R}\}$? ______No.

Exercise 6.2.15 Describe span $\{0\}$.

Exercise 6.2.16 Let **v** denote any vector in a vector space *V*. Show that span $\{\mathbf{v}\} = \text{span} \{a\mathbf{v}\}$ for any $a \neq 0$.

Exercise 6.2.17 Determine all subspaces of $\mathbb{R}\mathbf{v}$ where $\mathbf{v} \neq \mathbf{0}$ in some vector space V.

b. Yes.

Exercise 6.2.18 Suppose $V = \text{span} \{ \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \}$. If $\mathbf{u} = a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \dots + a_n \mathbf{v}_n$ where the a_i are in \mathbb{R} and $a_1 \neq 0$, show that $V = \text{span} \{ \mathbf{u}, \mathbf{v}_2, \dots, \mathbf{v}_n \}$.

$$\mathbf{v}_1 = \frac{1}{a_1}\mathbf{u} - \frac{a_2}{a_1}\mathbf{v}_2 - \cdots - \frac{a_n}{a_1}\mathbf{v}_n, \quad \text{so} \quad V \subseteq \text{span} \{\mathbf{u}, \mathbf{v}_2, \dots, \mathbf{v}_n\}$$

Exercise 6.2.19 If $\mathbf{M}_{nn} = \text{span} \{A_1, A_2, ..., A_k\}$, show that $\mathbf{M}_{nn} = \text{span} \{A_1^T, A_2^T, ..., A_k^T\}$.

Exercise 6.2.20 If $\mathbf{P}_n = \text{span} \{ p_1(x), p_2(x), \dots, p_k(x) \}$ and *a* is in \mathbb{R} , show that $p_i(a) \neq 0$ for some *i*.

Exercise 6.2.21 Let U be a subspace of a vector space V.

a. If $a\mathbf{u}$ is in U where $a \neq 0$, show that \mathbf{u} is in U.

b. If **u** and $\mathbf{u} + \mathbf{v}$ are in U, show that **v** is in U.

b. $\mathbf{v} = (\mathbf{u} + \mathbf{v}) - \mathbf{u}$ is in U.

Exercise 6.2.23 Let $U = \{p(x) \text{ in } \mathbf{P} \mid p(3) = 0\}$ be the set in Example 6.2.4. Use the factor theorem (see Section ??) to show that U consists of multiples of x-3; that is, show that $U = \{(x-3)q(x) \mid q(x) \in \mathbf{P}\}$. Use this to show that U is a subspace of \mathbf{P} .

Exercise 6.2.24 Let A_1, A_2, \ldots, A_m denote $n \times n$ matrices. If $\mathbf{0} \neq \mathbf{y} \in \mathbb{R}^n$ and $A_1\mathbf{y} = A_2\mathbf{y} = \cdots = A_m\mathbf{y} = \mathbf{0}$, show that $\{A_1, A_2, \ldots, A_m\}$ cannot span \mathbf{M}_{nn} .

Exercise 6.2.25 Let $\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n\}$ and $\{\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_n\}$ be sets of vectors in a vector space, and let

$$X = \begin{bmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_n \end{bmatrix} \quad Y = \begin{bmatrix} \mathbf{u}_1 \\ \vdots \\ \mathbf{u}_n \end{bmatrix}$$

as in Exercise 6.1.18.

- a. Show that $\operatorname{span} \{ \mathbf{v}_1, \ldots, \mathbf{v}_n \} \subseteq \operatorname{span} \{ \mathbf{u}_1, \ldots, \mathbf{u}_n \}$ if and only if AY = X for some $n \times n$ matrix A.
- b. If X = AY where A is invertible, show that span $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\} = \text{span} \{\mathbf{u}_1, \ldots, \mathbf{u}_n\}$.

Exercise 6.2.26 If U and W are subspaces of a vector space V, let $U \cup W = \{\mathbf{v} \mid \mathbf{v} \text{ is in } U \text{ or } \mathbf{v} \text{ is in } W\}$. Show that $U \cup W$ is a subspace if and only if $U \subseteq W$ or $W \subseteq U$.

Exercise 6.2.27 Show that **P** cannot be spanned by a finite set of polynomials.