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6.2 Subspaces and Spanning Sets

Chapter 5 is essentially about the subspaces of Rn. We now extend this notion.

Definition 6.2 Subspaces of a Vector Space

If V is a vector space, a nonempty subset U ⊆V is called a subspace of V if U is itself a
vector space using the addition and scalar multiplication of V .

Subspaces of Rn (as defined in Section 5.1) are subspaces in the present sense by Example 6.1.3.
Moreover, the defining properties for a subspace of Rn actually characterize subspaces in general.
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Theorem 6.2.1: Subspace Test

A subset U of a vector space is a subspace of V if and only if it satisfies the following three
conditions:

1. 0 lies in U where 0 is the zero vector of V .

2. If u1 and u2 are in U , then u1 +u2 is also in U .

3. If u is in U , then au is also in U for each scalar a.

Proof. If U is a subspace of V , then (2) and (3) hold by axioms A1 and S1 respectively, applied
to the vector space U . Since U is nonempty (it is a vector space), choose u in U . Then (1) holds
because 0 = 0u is in U by (3) and Theorem 6.1.3.

Conversely, if (1), (2), and (3) hold, then axioms A1 and S1 hold because of (2) and (3), and
axioms A2, A3, S2, S3, S4, and S5 hold in U because they hold in V . Axiom A4 holds because the
zero vector 0 of V is actually in U by (1), and so serves as the zero of U . Finally, given u in U ,
then its negative −u in V is again in U by (3) because −u = (−1)u (again using Theorem 6.1.3).
Hence −u serves as the negative of u in U .

Note that the proof of Theorem 6.2.1 shows that if U is a subspace of V , then U and V share the
same zero vector, and that the negative of a vector in the space U is the same as its negative in V .

Example 6.2.1

If V is any vector space, show that {0} and V are subspaces of V .

Solution. U =V clearly satisfies the conditions of the subspace test. As to U = {0}, it
satisfies the conditions because 0+0 = 0 and a0 = 0 for all a in R.

The vector space {0} is called the zero subspace of V .

Example 6.2.2

Let v be a vector in a vector space V . Show that the set

Rv = {av | a in R}

of all scalar multiples of v is a subspace of V .

Solution. Because 0 = 0v, it is clear that 0 lies in Rv. Given two vectors av and a1v in
Rv, their sum av+a1v = (a+a1)v is also a scalar multiple of v and so lies in Rv. Hence
Rv is closed under addition. Finally, given av, r(av) = (ra)v lies in Rv for all r ∈ R, so Rv
is closed under scalar multiplication. Hence the subspace test applies.

In particular, given d 6= 0 in R3, Rd is the line through the origin with direction vector d.
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The space Rv in Example 6.2.2 is described by giving the form of each vector in Rv. The next
example describes a subset U of the space Mnn by giving a condition that each matrix of U must
satisfy.

Example 6.2.3

Let A be a fixed matrix in Mnn. Show that U = {X in Mnn | AX = XA} is a subspace of Mnn.

Solution. If 0 is the n×n zero matrix, then A0 = 0A, so 0 satisfies the condition for
membership in U . Next suppose that X and X1 lie in U so that AX = XA and AX1 = X1A.
Then

A(X +X1) = AX +AX1 = XA+X1A+(X +X1)A
A(aX) = a(AX) = a(XA) = (aX)A

for all a in R, so both X +X1 and aX lie in U . Hence U is a subspace of Mnn.

Suppose p(x) is a polynomial and a is a number. Then the number p(a) obtained by replacing
x by a in the expression for p(x) is called the evaluation of p(x) at a. For example, if p(x) =
5−6x+2x2, then the evaluation of p(x) at a = 2 is p(2) = 5−12+8 = 1. If p(a) = 0, the number
a is called a root of p(x).

Example 6.2.4

Consider the set U of all polynomials in P that have 3 as a root:

U = {p(x) ∈ P | p(3) = 0}

Show that U is a subspace of P.

Solution. Clearly, the zero polynomial lies in U . Now let p(x) and q(x) lie in U so p(3) = 0
and q(3) = 0. We have (p+q)(x) = p(x)+q(x) for all x, so
(p+q)(3) = p(3)+q(3) = 0+0 = 0, and U is closed under addition. The verification that U
is closed under scalar multiplication is similar.

Recall that the space Pn consists of all polynomials of the form

a0 +a1x+a2x2 + · · ·+anxn

where a0, a1, a2, . . . , an are real numbers, and so is closed under the addition and scalar mul-
tiplication in P. Moreover, the zero polynomial is included in Pn. Thus the subspace test gives
Example 6.2.5.

Example 6.2.5

Pn is a subspace of P for each n ≥ 0.
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The next example involves the notion of the derivative f ′ of a function f . (If the reader is not
familiar with calculus, this example may be omitted.) A function f defined on the interval [a, b] is
called differentiable if the derivative f ′(r) exists at every r in [a, b].

Example 6.2.6

Show that the subset D[a, b] of all differentiable functions on [a, b] is a subspace of the
vector space F[a, b] of all functions on [a, b].

Solution. The derivative of any constant function is the constant function 0; in particular,
0 itself is differentiable and so lies in D[a, b]. If f and g both lie in D[a, b] (so that f ′ and
g′ exist), then it is a theorem of calculus that f +g and r f are both differentiable for any
r ∈ R. In fact, ( f +g)′ = f ′+g′ and (r f )′ = r f ′, so both lie in D[a, b]. This shows that
D[a, b] is a subspace of F[a, b].

Linear Combinations and Spanning Sets

Definition 6.3 Linear Combinations and Spanning

Let {v1, v2, . . . , vn} be a set of vectors in a vector space V . As in Rn, a vector v is called a
linear combination of the vectors v1, v2, . . . , vn if it can be expressed in the form

v = a1v1 +a2v2 + · · ·+anvn

where a1, a2, . . . , an are scalars, called the coefficients of v1, v2, . . . , vn. The set of all
linear combinations of these vectors is called their span, and is denoted by

span{v1, v2, . . . , vn}= {a1v1 +a2v2 + · · ·+anvn | ai in R}

If it happens that V = span{v1, v2, . . . , vn}, these vectors are called a spanning set for V . For
example, the span of two vectors v and w is the set

span{v, w}= {sv+ tw | s and t in R}

of all sums of scalar multiples of these vectors.

Example 6.2.7

Consider the vectors p1 = 1+ x+4x2 and p2 = 1+5x+ x2 in P2. Determine whether p1 and
p2 lie in span{1+2x− x2, 3+5x+2x2}.

Solution. For p1, we want to determine if s and t exist such that

p1 = s(1+2x− x2)+ t(3+5x+2x2)
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Equating coefficients of powers of x (where x0 = 1) gives

1 = s+3t, 1 = 2s+5t, and 4 =−s+2t

These equations have the solution s =−2 and t = 1, so p1 is indeed in
span{1+2x− x2, 3+5x+2x2}.
Turning to p2 = 1+5x+ x2, we are looking for s and t such that

p2 = s(1+2x− x2)+ t(3+5x+2x2)

Again equating coefficients of powers of x gives equations 1 = s+3t, 5 = 2s+5t, and
1 =−s+2t. But in this case there is no solution, so p2 is not in
span{1+2x− x2, 3+5x+2x2}.

We saw in Example 5.1.6 that Rm = span{e1, e2, . . . , em} where the vectors e1, e2, . . . , em are
the columns of the m×m identity matrix. Of course Rm = Mm1 is the set of all m×1 matrices, and
there is an analogous spanning set for each space Mmn. For example, each 2× 2 matrix has the
form [

a b
c d

]
= a

[
1 0
0 0

]
+b

[
0 1
0 0

]
+ c

[
0 0
1 0

]
+d

[
0 0
0 1

]
so

M22 = span
{[

1 0
0 0

]
,
[

0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
Similarly, we obtain

Example 6.2.8

Mmn is the span of the set of all m×n matrices with exactly one entry equal to 1, and all
other entries zero.

The fact that every polynomial in Pn has the form a0 +a1x+a2x2 + · · ·+anxn where each ai is
in R shows that

Example 6.2.9

Pn = span{1, x, x2, . . . , xn}.

In Example 6.2.2 we saw that span{v} = {av | a in R} = Rv is a subspace for any vector v in a
vector space V . More generally, the span of any set of vectors is a subspace. In fact, the proof of
Theorem 5.1.1 goes through to prove:

Theorem 6.2.2
Let U = span{v1, v2, . . . , vn} in a vector space V . Then:

1. U is a subspace of V containing each of v1, v2, . . . , vn.
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2. U is the “smallest” subspace containing these vectors in the sense that any subspace
that contains each of v1, v2, . . . , vn must contain U .

Here is how condition 2 in Theorem 6.2.2 is used. Given vectors v1, . . . , vk in a vector space V
and a subspace U ⊆V , then:

span{v1, . . . , vn} ⊆U ⇔ each vi ∈U

The following examples illustrate this.

Example 6.2.10

Show that P3 = span{x2 + x3, x, 2x2 +1, 3}.

Solution. Write U = span{x2 + x3, x, 2x2 +1, 3}. Then U ⊆ P3, and we use the fact that
P3 = span{1, x, x2, x3} to show that P3 ⊆U . In fact, x and 1 = 1

3 ·3 clearly lie in U . But
then successively,

x2 = 1
2 [(2x2 +1)−1] and x3 = (x2 + x3)− x2

also lie in U . Hence P3 ⊆U by Theorem 6.2.2.

Example 6.2.11

Let u and v be two vectors in a vector space V . Show that

span{u, v}= span{u+2v, u−v}

Solution. We have span{u+2v, u−v} ⊆ span{u, v} by Theorem 6.2.2 because both
u+2v and u−v lie in span{u, v}. On the other hand,

u = 1
3(u+2v)+ 2

3(u−v) and v = 1
3(u+2v)− 1

3(u−v)

so span{u, v} ⊆ span{u+2v, u−v}, again by Theorem 6.2.2.

Exercises for 6.2

Exercise 6.2.1 Which of the following are sub-
spaces of P3? Support your answer.

a. U = { f (x) | f (x) ∈ P3, f (2) = 1}

b. U = {xg(x) | g(x) ∈ P2}

c. U = {xg(x) | g(x) ∈ P3}

d. U = {xg(x)+(1− x)h(x) | g(x) and h(x) ∈ P2}
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e. U = The set of all polynomials in P3 with con-
stant term 0

f. U = { f (x) | f (x) ∈ P3, deg f (x) = 3}

b. Yes

d. Yes

f. No; not closed under addition or scalar multi-
plication, and 0 is not in the set.

Exercise 6.2.2 Which of the following are sub-
spaces of M22? Support your answer.

a. U =

{[
a b
0 c

]∣∣∣∣ a, b, and c in R
}

b. U =

{[
a b
c d

]∣∣∣∣ a+b = c+d; a, b, c, d in R
}

c. U = {A | A ∈ M22, A = AT}

d. U = {A | A ∈ M22, AB = 0}, B a fixed 2 × 2
matrix

e. U = {A | A ∈ M22, A2 = A}

f. U = {A | A ∈ M22, A is not invertible}

g. U = {A | A ∈ M22, BAC =CAB}, B and C fixed
2×2 matrices

b. Yes.

d. Yes.

f. No; not closed under addition.

Exercise 6.2.3 Which of the following are sub-
spaces of F[0, 1]? Support your answer.

a. U = { f | f (0) = 0}

b. U = { f | f (0) = 1}

c. U = { f | f (0) = f (1)}

d. U = { f | f (x)≥ 0 for all x in [0, 1]}

e. U = { f | f (x) = f (y) for all x and y in [0, 1]}

f. U = { f | f (x+ y) = f (x)+ f (y) for all
x and y in [0, 1]}

g. U = { f | f is integrable and
∫ 1

0 f (x)dx = 0}

b. No; not closed under addition.

d. No; not closed under scalar multiplication.

f. Yes.

Exercise 6.2.4 Let A be an m× n matrix. For
which columns b in Rm is U = {x | x ∈ Rn, Ax = b}
a subspace of Rn? Support your answer.

Exercise 6.2.5 Let x be a vector in Rn (written
as a column), and define U = {Ax | A ∈ Mmn}.

a. Show that U is a subspace of Rm.

b. Show that U = Rm if x 6= 0.

b. If entry k of x is xk 6= 0, and if y is in Rn, then
y= Ax where the column of A is x−1

k y, and the
other columns are zero.

Exercise 6.2.6 Write each of the following as a
linear combination of x+1, x2 + x, and x2 +2.

x2 +3x+2a) 2x2 −3x+1b)
x2 +1c) xd)

b. −3(x+1)+0(x2 + x)+2(x2 +2)

d. 2
3(x+1)+ 1

3(x
2 + x)− 1

3(x
2 +2)

Exercise 6.2.7 Determine whether v lies in
span{u, w} in each case.

a. v = 3x2 −2x−1; u = x2 +1, w = x+2

b. v = x; u = x2 +1, w = x+2
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c. v=

[
1 3

−1 1

]
; u=

[
1 −1
2 1

]
, w=

[
2 1
1 0

]

d. v=

[
1 −4
5 3

]
; u=

[
1 −1
2 1

]
, w=

[
2 1
1 0

]

b. No.

d. Yes; v = 3u−w.

Exercise 6.2.8 Which of the following functions
lie in span{cos2 x, sin2 x}? (Work in F[0, π].)

cos2xa) 1b)
x2c) 1+ x2d)

b. Yes; 1 = cos2 x+ sin2 x

d. No. If 1+ x2 = acos2 x+ bsin2 x, then taking
x = 0 and x = π gives a = 1 and a = 1+π2.

Exercise 6.2.9

a. Show that R3 is spanned by
{(1, 0, 1), (1, 1, 0), (0, 1, 1)}.

b. Show that P2 is spanned by {1+2x2, 3x, 1+
x}.

c. Show that M22 is spanned by{[
1 0
0 0

]
,
[

1 0
0 1

]
,
[

0 1
1 0

]
,
[

1 1
0 1

]}
.

b. Because P2 = span{1, x, x2}, it suffices to
show that {1, x, x2}⊆ span{1+2x2, 3x, 1+x}.
But x = 1

3(3x);1 = (1+ x)− x and x2 = 1
2 [(1+

2x2)−1].

Exercise 6.2.10 If X and Y are two sets of vectors
in a vector space V , and if X ⊆ Y , show that
span X ⊆ span Y .

Exercise 6.2.11 Let u, v, and w denote vectors
in a vector space V . Show that:

a. span{u, v, w}= span{u+v, u+w, v+w}

b. span{u, v, w}= span{u−v, u+w, w}

b. u = (u+w)−w, v =−(u−v)+(u+w)−w,
and w = w

Exercise 6.2.12 Show that

span{v1, v2, . . . , vn, 0}= span{v1, v2, . . . , vn}

holds for any set of vectors {v1, v2, . . . , vn}.

Exercise 6.2.13 If X and Y are nonempty subsets
of a vector space V such that span X = span Y = V ,
must there be a vector common to both X and Y?
Justify your answer.

Exercise 6.2.14 Is it possible that
{(1, 2, 0), (1, 1, 1)} can span the subspace U =
{(a, b, 0) | a and b in R}?
No.

Exercise 6.2.15 Describe span{0}.

Exercise 6.2.16 Let v denote any vector in a vec-
tor space V . Show that span{v}= span{av} for any
a 6= 0.

Exercise 6.2.17 Determine all subspaces
of Rv where v 6= 0 in some vector space V .

b. Yes.

Exercise 6.2.18 Suppose V = span{v1, v2, . . . , vn}.
If u = a1v1 +a2v2 + · · ·+anvn where the ai are in R
and a1 6= 0, show that V = span{u, v2, . . . , vn}.

v1 = 1
a1

u − a2
a1

v2 − ·· · − an
a1

vn, so V ⊆
span{u, v2, . . . , vn}

Exercise 6.2.19 If Mnn = span{A1, A2, . . . , Ak},
show that Mnn = span{AT

1 , AT
2 , . . . , AT

k }.

Exercise 6.2.20 If Pn = span{p1(x), p2(x), . . . , pk(x)}
and a is in R, show that pi(a) 6= 0 for some i.

Exercise 6.2.21 Let U be a subspace of a vector
space V .

a. If au is in U where a 6= 0, show that u is in U .



6.2. Subspaces and Spanning Sets 341

b. If u and u+v are in U , show that v is in U .

b. v = (u+v)−u is in U .

Exercise 6.2.22 Let U be a nonempty subset of
a vector space V . Show that U is a subspace of V if
and only if u1 +au2 lies in U for all u1 and u2 in U
and all a in R.
Given the condition and u ∈U , 0 = u+(−1)u ∈U .
The converse holds by the subspace test.

Exercise 6.2.23 Let U = {p(x) in P | p(3) = 0} be
the set in Example 6.2.4. Use the factor theorem (see
Section ??) to show that U consists of multiples of
x−3; that is, show that U = {(x−3)q(x) | q(x) ∈ P}.
Use this to show that U is a subspace of P.

Exercise 6.2.24 Let A1, A2, . . . , Am denote n× n
matrices. If 0 6= y ∈Rn and A1y = A2y = · · ·= Amy =
0, show that {A1, A2, . . . , Am} cannot span Mnn.

Exercise 6.2.25 Let {v1, v2, . . . , vn} and
{u1, u2, . . . , un} be sets of vectors in a vector space,
and let

X =

 v1
...

vn

 Y =

 u1
...

un


as in Exercise 6.1.18.

a. Show that span{v1, . . . , vn} ⊆
span{u1, . . . , un} if and only if AY = X for
some n×n matrix A.

b. If X = AY where A is invertible, show that
span{v1, . . . , vn}= span{u1, . . . , un}.

Exercise 6.2.26 If U and W are subspaces of a
vector space V , let U ∪W = {v | v is in U or v is in
W}. Show that U ∪W is a subspace if and only if
U ⊆W or W ⊆U .

Exercise 6.2.27 Show that P cannot be spanned
by a finite set of polynomials.
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